

Development of Donghae-1 Gas Field, Offshore Korea

30 March 2004

KIGAM (Korea Institute of Geoscience & Mineral Resources) KNOC (Korea National Oil Corporation)

The 3rd Workshop of the Cambodia PPM Case Study

Reservoir Location

The 3rd Workshop of the Cambodia PPM Case Study

DEVELOPMENT OF DONGHAE-1

Table of Presentation

- Introduction
- Deliverability Analysis
- Development Options
- Compositional Simulation
- Production Optimization
- Production Facilities
- Concluding Remarks

DST Data Analysis

- DST & Deliverability Analysis
 - ✓ DST Data
 - ✓ Reservoir Properties
 - Horner Plot
 - Type Curve Matching
 - ✓ Radius of Investigation
 - ✓ Wellbore Storage Effect
 - ✓ Estimation of Deliverability

DST No.	Target Layer	Gauge Depth (ft)	Net Pay Thickness (ft)	Deliverability Test	
V DST#2	B4	8366.14	103.8		
V DST#3	B2	7685.83	51.7	Flow After Flow	
V-1 DST#2	B3, B4	7868.44	137.4	Test	
V-1 DST#3	B2	7781.27	48.4		
V-2 DST#1	B4	8014.07	92.7	Modified	
V-2 DST#2	B3	7923.85	28.3	Isochronal Test	
V-2 DST#3	B2	7843.44	42.3		

Gorae V (DST#2)

Pressure Transient Test		Deliverability Test	
k (md)	37.49	n	0.865
S	4.50	С	1.07e-4
p* (psi)	3608.79	AOF (MMSCFD)	152.80
r _{inv} . (ft)	853.92	Late time deviation: shale effect	
t _{ws} (hrs)	0.0021	Wellbore storage effect is not significant	

DST Results

- Excellent agreements between type curve matching method and Horner method
 - Permeability: moderately ranged from 23.0 to 65.3 md
 - ✓ Skin factor: 4.64 to 21
 - ✓ AOF: 21.2 to 152.8 MMSCFD
- Substantial productivity: more than 60 MMSCFD
 - ✓ V-2 (DST #2): 21.2 MMSCFD

DEVELOPMENT OPTIONS

Considerations

- Engineering Data
 - Reserve, Rock and Fluid Properties
- Gas Sales Specifications
 - ✓ Marketplace, Supply, Price
- Design Specifications
 - ✓ Temperature, Pressure, Processing Capacity of Facilities
- Environmental Data
 - ✓ Weather, Subsea Condition
- Economic Parameters
 - Cost of Capital, Operating Expenses

Selection Process

- 1st Stage : Identification of All Feasible Development Options
 - ✓ Substructure System Type
 - ✓ Drilling Methods
- 2nd Stage : Selection of Favorable Process
 - ✓ Option Screening
 - 24 Production Options
- 3rd Stage : Optimized Development Concept
 - Selection of Preferable Process Option

1) Identification of Development Options

The 3rd Workshop of the Cambodia PPM Case Study

2) Screening

Level 1: Separator, Compression, Dehydration, Dewpointing, Condensate stabilization			24 Options
	Level 2: Position Selection of Each Equipment	Screening	8 Options
	Level 3: Optimized Production Process Selection	Economic Screening	

3) Diagram of Preferred Process Scheme

Objectives

Phase I

Estimation of the gas and condensate reserves
 (GIIP) of Donghae-1 Gas Field

Phase II

 To evaluate the field's development including optimal well locations, various sensitivities and water coning & partially penetrating wells

Reservoir Properties

EOS Modeling

- 11 Components (CO2, N2, C1~C6, C7+)
- 5 Pseudo-Components (Non-HC, C1, C2/C3, C4/C5, C6+)

Dew-point Phase Diagram

Capillary P (Pc) : SCAL

Relative Permeability

Gas Water Pc

Gas Water kr (Corey Eq.)

Korea Institute of Geoscience

and Mineral Resources

The 3rd Workshop of the Cambodia PPM Case Study

Model Grid System

- **Grid** : 47x43x15
- □ Layers : C1, B1, B2, B3/4
- Constant Thickness

C1: Structure/Isopach/Grid B1 Reservoir B2 Reservoir B3/4 Reservoir Image: Structure/Isopach/Grid Image: Structure/Isopach/Grid Image: Structure/Isopach/Grid Image: Structure/Isopach/Grid Image: Structure/Isopach/Grid

Base Case Run

Gas & Condensate Production vs. Time

Gas & Condensate Rate vs. Cumulative Gas Production

Condensate Yield, Water Cut & Average Reservoir Pressure

Base Case Results

- Ultimate Gas Recovery : 142 Bcf (68% of GIIP)
- Period of Production Plateau : 6 years
- Condensate Recovered : 1.2 MMbbl (37% of In-Place)
- Water Production Less Than 1.7 bbl/MMscf

Sensitivity Analysis - 13 Cases

- Permeability
 - Production Performance vs. Horizontal Permeability
- Gas Initially In-Place
 - ✓ Production Performance vs. GIIP
- Surface Operating Pressure
 - ✓ Production Performance vs. FWHP
- Plateau Production Rate
 - ✓ Production Performance vs. Field Rate
- Strength of Aquifer
 - ✓ Aquifer Strength Sensitivity
 - Effect of Aquifer Strength & Rate on Recovery
- Effect of k_v and Selective Well Completion

COMPOSITIONAL SIMULATION

Compositional Simulation Results

• Probable Reserve of Donghae-1 (Gorae V & V-3 Field) :

- ✓ 208 Bcf of Gas, 1.77 MMbbl of Condensate
- Minimum FWHP of 700 psi & Minimum Allowable Gas Well Rate of 5 MMscf/day Assumed

• 4 Wells Required in the 4 Zones :

• Retrograde Condensation :

- 2.5 MMbbl of condensate to remain in the reservoir in a liquid state at the end of primary depletion.
- 1% of HCPV, immobile and no effect on gas deliverability

Due to the modest k, the Aquifer Strength Weak

- ✓ Insensitive to Plateau Rate, GIIP
- Relatively high k_v/k_h
 - No Effect on the Ultimate Gas Recovery, regardless of penetration

Integrated Network Model

The 3rd Workshop of the Cambodia PPM Case Study

Integration of Reservoir and Surface Model

Production Allocation & Compressor Installation

- Total Production Rate: 50 MMscf/D
- BD12, BD13 Line: Detour Line for Emergency
- **Platform Minimum Pressure: 500 psia**
- **Allocation of Optimized Gas Production Rate**

- Optimized Production Rate
 - Plateau Period: 3900 Davs
 - Compressor Installation: 2000 Days (5.5 yrs)
 - Cumulative Gas Production (During Plateau Period)

Pro. (MMSTB)

Condensate

Cum.

0

Cum. Condensate Pro. (During Plateau Period)

Cum, Condensate

Pro. at Separator

Fopsid

1000 2000 3000 4000 5000 6000

Time (Day)

-

The 3rd Workshop of the Cambodia PPM Case Study

CONCLUDING REMARKS

- Donghae-1 Gas Field, Offshore Korea
 - ✓ Production Options
 - ✓ DST
 - ✓ Reservoir Simulation
 - ✓ Integrated Network Modeling
 - ✓ Facility Design

Gas & Condensate Production (2004)

 We are willing to actively involve in PPM Case Studies: collaborative work with Host Countries

