The CO2CRC Otway Project

Dr Matthias Raab *Program Manager Storage*

Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)

CCOP Workshop 12 September 2012

© CO2CRC All rights reserved

Key aspects for geological storage of CO₂

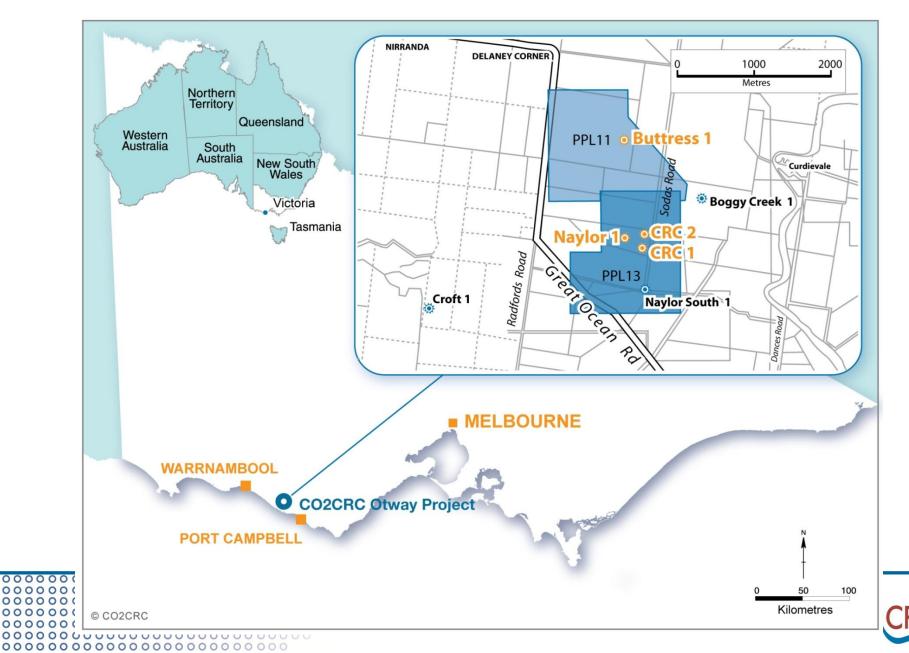
- Where can we store? (Site Selection / Characterisation)
- How much can we store? (Storage Capacity)
- How can we best get it in there? (Injectivity)
- How do we know it will stay there? (Containment)
- How can we tell? (Measuring, monitoring, verification)
- How much will it cost? (Economics)
- What is the Risk? (Risk Assessment / Management)
- Making it happen (Regulatory, Liability, Public Perception)

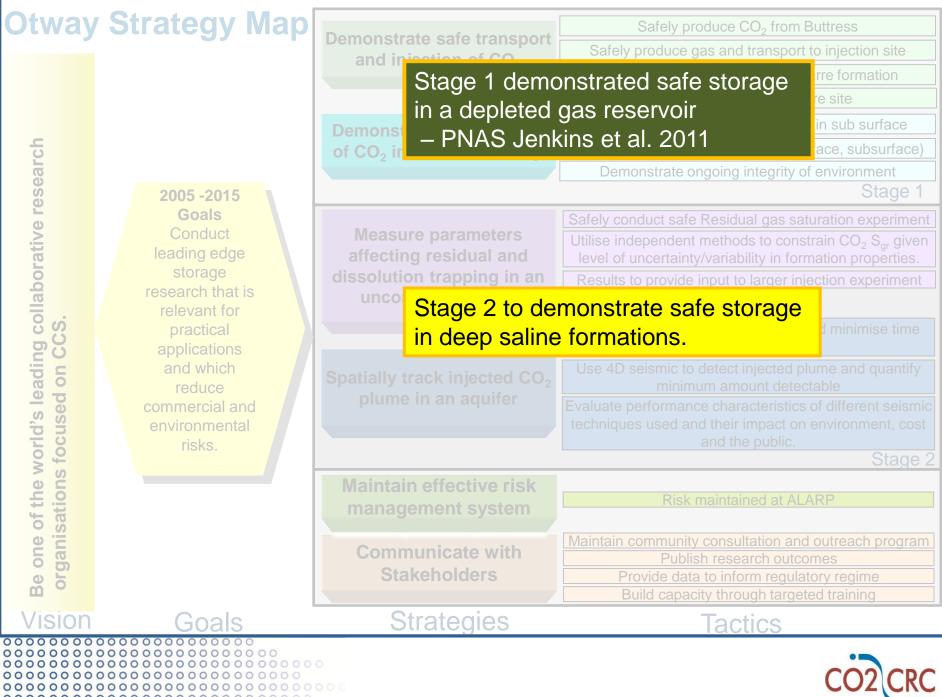
CO2CRC Storage Program

Conducting leading edge research into Geological Carbon Storage

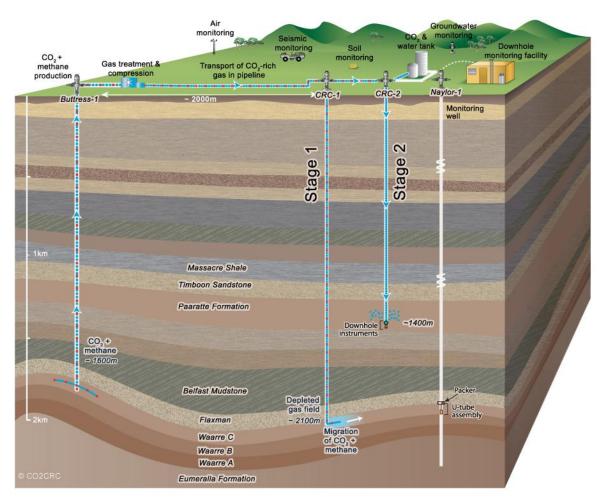
- Stage 1: 65kt CO2 injected in depleted Gas Field
- Stage 2: Researching CO2 storage in saline aquifers
- 15 research projects
- Two large field experiments (Otway Stage 2b & 2c)
- 79 researchers across 11 Institutions, 15 current PhD students
- 2011-12 FY budget of \$11,900,000
- CO2 Sequestration facility in SW Victoria (Otway Project)

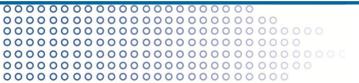
Our Field Experiments



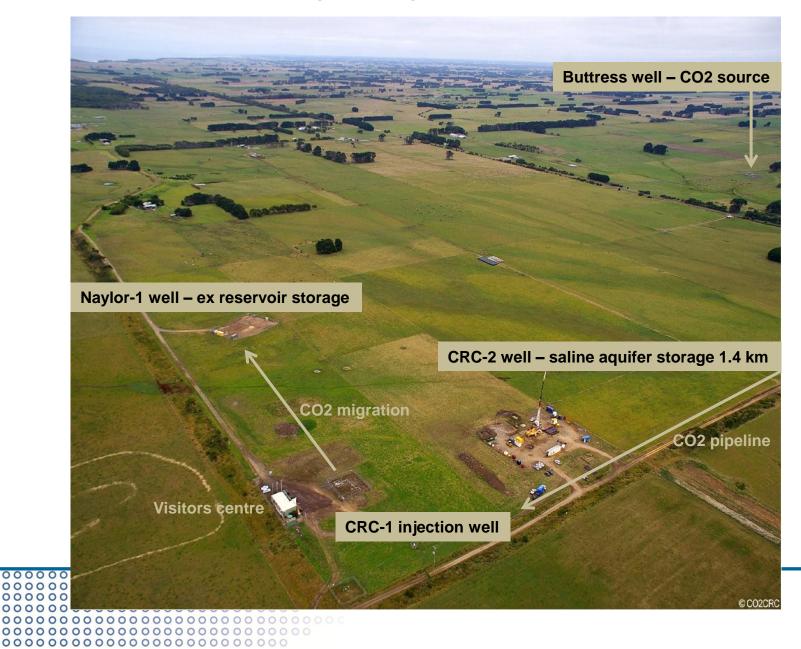

The CO2CRC Otway Project

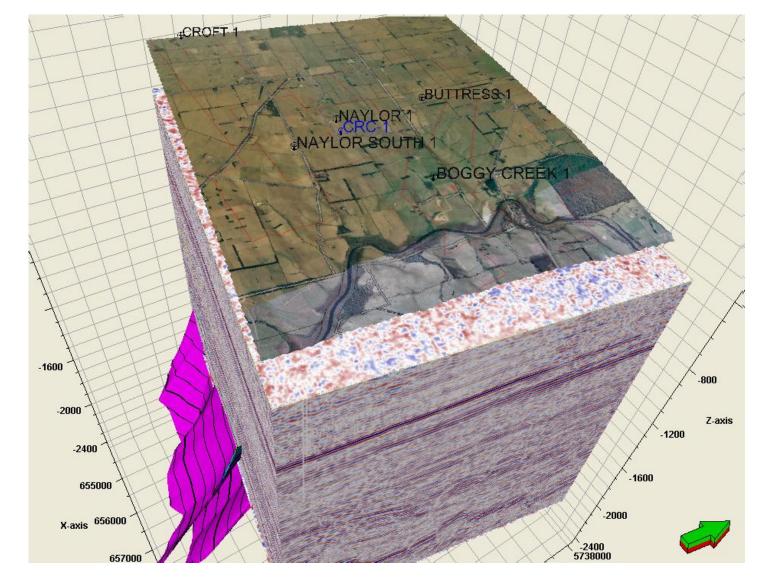
- Australia's only Sequestration Facility
- One of few operational sequestration sites in the world
- Operating since 2008
- Research and injection into depleted hydrocarbon reservoir (Stage 1)
- Research and injection into saline aquifer (Stage 2)
- Unique research facility with global collaboration
- Concept, research and facilities provide blueprints to other CCS projects
- Will remain Australia's only CO2 injection site at least until 2015.


Location of CO2CRC Otway Project



The CO2CRC Otway Project - Stage 1 & 2


- Stage 1: 2004 to 2009
 - Demonstrate safe transport, injection and storage of CO₂ in a structural trap
- Stage 2: 2009 to 2015
 - 2a : Drill CRC-2
 - 2b: Measure parameters affecting residual and dissolution trapping in an unconfined aquifer
 - 2c: Spatially track injected CO₂ in an aquifer



CO2CRC Otway Project Aerial View

Otway Project: 3D layered Earth model

T.Dance

Risk Example – Pre Implementation

Ope	rational Risks										
7	Reservoir Integrity	Reservoir trapping mechanisms adequate to contain injected gas in the absence of regional seal above the injection interval at 1430 m.	Rare	Major	Medium	Reservoir model built. Residual gas saturation test will provide residual gas trapping potential, in addition to dissolution trapping.	Rare	Minor	Low	Technical reports. Peer Review documents	Adapted November 2009
8	Reservoir Integrity	Leakage from reservoinplugged well, Stage 1 and 2.	Possible	Major	High	Technical risk assessment undertaken by CO2CRC team. Reservoir leakage risk is low. Wells have good cement bond so leakage from behind casing is low. Use abandonment and risk mitigation strategies consist with O&G Industry.	Rare Moderate Low a		Techncial risk assessment. Bond Logs	Adapted November 2010	
9	Plant Operation	Compressor failurefincident impacting timeline of Stage 2B.	Possible	Moderate	Medium	18 months of track record. Knowledge of operations. Appropriate de-mothball and pre-start up procedures. Plant is used only for gaslifting - so relatively modest operation times. For incidents DHS and emergency response plans in place. Wellheads installed with industry standard valves and alarm systems.	Possible Moderate Med		Medium	Documentation of pre start audit procdure.	Adapted November 2010
10	Plume Imaging	Compromise scientific objective of Stage 2C. Inability to effectively detect the CO2 plume in the Paaratte fm because of challenging subsurface conditions, malfunction of seismic equipment.	Possible	Moderate	Medium	Seismic forward modeling predicts good results to image injection amounts between 5 and 7 k tons of CO2 injection. Land seismic survey methods tested during Stage 1, robust image processing developed.	Rare	Moderate	Low	Technical reports and publications	Adapted November 2011
Heg	EPA regulation	Unable to fulfill EPA regulatory conditions.	Rare	Moderate	Medium	Technical risk analysis on possible leakage paths considered when formulating KPI's. Monitoring to be performed as per plan. EPA to be briefed on research findings on a regular basis and potential ability to review KPI's based on new findings if justifiable. Received exemption from Vic CCS legislation.	Rare	Minor	Low	Regular EPA reporting	Adapted November 2010
12	Landowner agreement	Break down of relationship and failure to adhere of agreements with all landowners.	Possible	Major	High	Agreements inplace and landowner regular engagements.	nplace and landowner regular Rare Minor Low Ag		Landowner Agreements and DOI license	Adapted November 2010	
13	Tenement Relinquishment	Reliquishment budget inadequte.	Possible	Minor	Low	Cost of rehabilitation and relinquishment allowed for in project budget following standard gas oil well abandonment process and reviewed in 2007. Review every two years and seek additional funds from Board if necessary.		Minor	Low	Tenements, legal advice	Adapted November 2010

Core Enabling Legislation

Impact Assessment and Planning Approvals

- Environment Protection and Biodiversity Act 1999 not a controlled action
- Environmental Effects Act 1978 no environment effects statement
- *Planning and Environment Act 1987* planning scheme amended

Environmental Portfolio Approvals

• Environment Protection Act 1970 - Research Demonstration & Development

Petroleum Portfolio Approvals

• Petroleum Act 1998 - various petroleum related activities approved

Water Portfolio Approvals

• Water Act 1989 - various drilling and injection activities approved

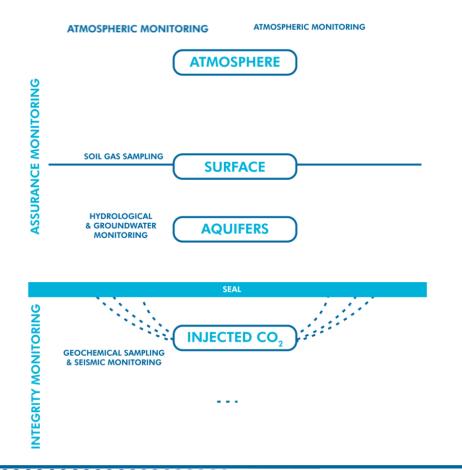
Land Access

- Planning and Environment Act 1987
- Land Acquisition and Compensation Act 1986

Regulatory Approvals

Activity	Approvals/Permits	Regulator	Application Process
Production of CO ₂	Production Plan	DPI	- Petroleum Act 2000 (DPI).
Compression & Transport of CO ₂ : 1) Plant (compressor) 2) Gathering line 3) Other facilities (centre, etc)	Planning Approval, Gathering Line Approval	DSE, DPI, Movne Shire, DOL	 Petroleum Act 2000 (DPI) Ministerial Amendment request of the Planning & Environment Act 1987 (Moyne Shire/DSE) Exemption of Pipeline Act 2005 (DPI) Cultural Heritage Act (DPI) Compensation agreement: consent to land access Project of Significance and Compulsory Acquisition (DOI) Exemption of Rural Fire Service (CFA)
Drilling of New well	Drilling License	SRW, DPI	- Submit EMP, SPM and Drilling plan. Well drilled under water license.
Injection of CO ₂ (CRC-2)	Disposal Approval	SRW, EPA	 Water Act 1989 Section 76 & 67: Application for approval to dispose of matter by means of a bore Compensation agreement: consent to land access
Storage of CO ₂	Storage Approvals	EPA	- Environment Protection Act 1970: Research Development and Demonstration (RDD) Approval (EPA)
Monitoring & Verification 1) Atmospheric 2) SOBN Water wells 3) Down-hole (Naylor-1) Monitoring	Planning Approval, Compensation Agreement, DSE access rights	EPA,DSE, Moyne Shire	 Ministerial Amendment request of the Planning & Environment Act 1987 (Moyne Shire/DSE) Consent to use (SOBN) bores (DSE) Compensation agreement: consent to land access
	00000 00000000 0000000		CO2 CRC

Community & Assurance



Questions raised about CCS

- Is it safe?
- Will it affect groundwater?
- What will happen if there is a leak?
- Will my land/crops/livestock/house be affected?
- Will I get compensation?
- Will my electricity bill go up?
- Will jobs be created?
- Will I get royalty payments?

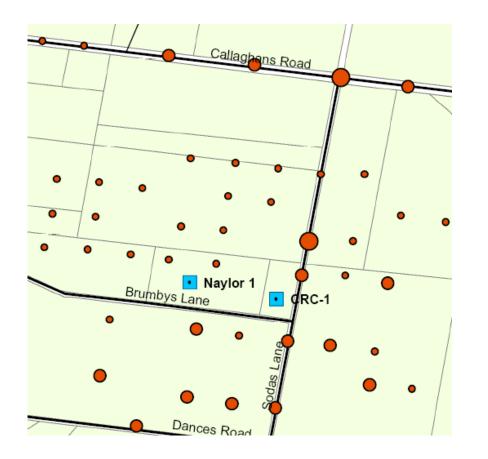
Assuring the community – a monitoring plan

- Measuring the atmospheric concentration of CO₂
- Measuring the concentration of CO₂ in the soil
- Analysing the groundwater
- Measuring the temperature and pressure, recording sound waves and detecting chemical changes

CO2 CRC

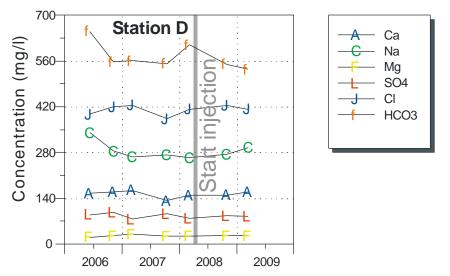
Atmospheric monitoring

Existing CO₂ sources characterised before injection


Look for evidence of emissions from CO₂ storage – distinguish from large scale diurnal and seasonal fluctuations.

Atmospheric monitoring equipment

D. Etheridge et al., CSIRO


Soil gas monitoring

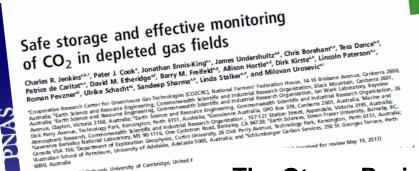
- Baseline surveys of soil
 gas before injection
- Determine likely source of CO₂ in soil gas by isotopic composition, presence of other gases and tracers
- Repeat surveys and look for anomalies

Groundwater Monitoring

- Establish baseline groundwater
 levels and chemistry of freshwater
 aquifers
- Sample before injection and regularly during and after injection
- Samples analysed for pH, redox, electrical conductivity, temperature, alkalinity, Ca²⁺, Mg²⁺, isotopes (δ²H, δ¹³C, δ¹⁸O, δ³⁴S), etc.

Downhole fluid sampling





Seismic monitoring

- Range of seismic techniques
- Vertical Seismic Profiling (VSP) (source surface, receiver downhole)
- High Resolution 3D surveys
- Microseismic surveys (measures creaks in the subsurface)

CO2 CRC

Proceedings National Academy of Science

Jenkins et al Dec 2011

Edited by E. Ronald Oxburgh, University of Cambridge, United V

Carbon capture and storage (CCS) is vital to reduce CO2 to the atmosphere, potentially providing 20% of the nee tions in global emissions. Research and demonstratic are important to increase scientific understanding of CC ing processes and results widely available helps to re concerns, which may otherwise block this technology. Project has provided verification of the underlying sci storage in a depleted gas field, and shows that the si stakeholders can be earned and retained. Quantitative of long-term storage has been demonstrated. A dir ment of storage efficiency has been made, confirm storage in depleted gas fields can be safe and effect these structures could store globally significant and

arbon stomge | geosequestration | carbon dioxide | dimate change | energy policy

ncreasing atmospheric CO2, and the resulting d critical issue. Fossil fuels will continue to be bur (1), thus capture and geological storage are via current approximately 30 Gty-1 of CO2 emitted (2, 3). Many aspects of carbon capture and str well-understood in chemical engineering and th dustries. Globally, there appears to be sufficien for decades to come (2) with depleted oil and ga obvious early targets for CCS projects. CO2 has been injected into oil reservoirs f

hance recovery (4). Large United States oper at Weyburn (5), Cranfield (6), and Rangely (7 CCS case studies. The Sleipner (8), Snøvit (9) projects store 1-3 Mt CO₂ each year from 5 the similar Gorgon project in northwest Aus struction (11). Smaller research and develop projects have been completed or are in pro netl.doe.gov/technologies/carbon_seq/part html). Subsurface storage of natural gas has history (16). Hazardous waste, in large 30 Mty⁻¹ in the United States) is injected i fers (17), and in Canada approximately 5 M H₂S) has been safely stored, in several ca

Despite a successful record, CCS remai reservoirs (18). nical concerns are long-term leakage, glo ing feasibility, and the scale of deploym focuses on perceived risks from leakage. onshore sites for commercial CCS has be projects in the Netherlands (Shell, Bare

www.pnas.org/cgi/doi/10.1073/pnas.1107255108

The Otway Project provided verification of the underlying science of CO2 storage in a depleted gas field.

Support of all stakeholders can be earned and retained.

- Quantitative verification of long-term storage has been demonstrated.
- A direct measurement of storage efficiency has been made, confirming that CO2 storage in depleted gas fields can be safe and effective, and
- Depleted reservoirs could store globally significant amounts of CO₂.

THE AUSTRALIAN *

ninems

DRadio Wissen

NewScientist

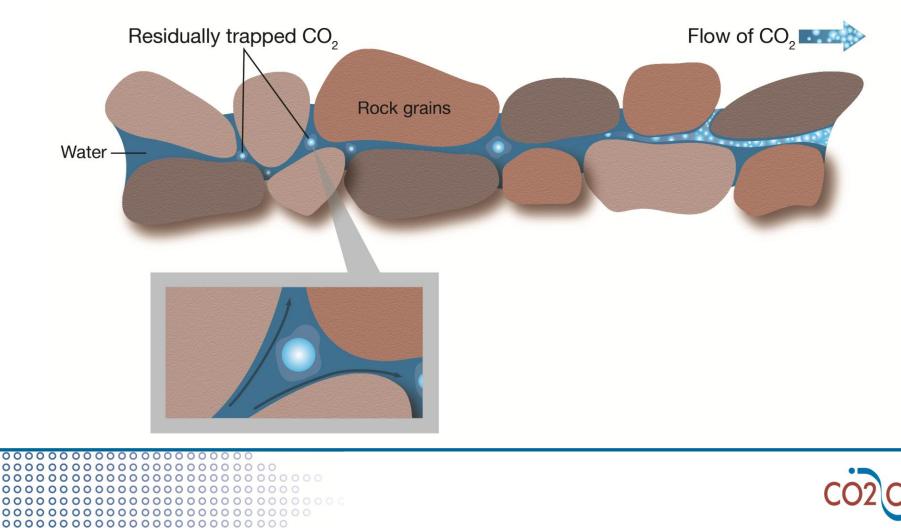
THE VANCOUVER SUN

- ABC Ballarat
- ABC Science Online
- ABC Radio National AM
- ABC Radio News
- The Weekly Times
- Radio NZ Wellington
- Nelson Mail
- Sunday Star Times
- Marlborough Express
- Timaru Herald
- Manawatu Standard
- WA Business News

- Electric Light and Power
- Industry Search
- Utility Products
- Scinexx (Germany)
- Sina English (China)
- PhysOrg.com (Canada)
- E! Science news (Canada)
- Australasian Science
- Eco-business.comDalje.com (Croatia)
- Financial Post (Canada)
- Edmonton Journal (Canada)

TVNZ

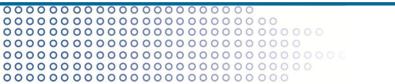
- Canada.com (Canada)
- UPI.com (USA)
- Energetic City (Canada)
- Calgary Herald (Canada)
- Ottawa Citizen (Canada)
- MENA FN (Middle East North Africa)
- Energy Daily (USA)
- Capture Ready (China)
- Liberal Victoria
- Clear The Air News Blog
- R&D Magazine


Otway Stage 2 – storage in saline aquifers

Trapping in a saline formation

Residual trapping is where small amounts of CO_2 are disconnected from each other, trapped in the pore space.

Capillary Trapping


Volumetric equation for capacity calculation

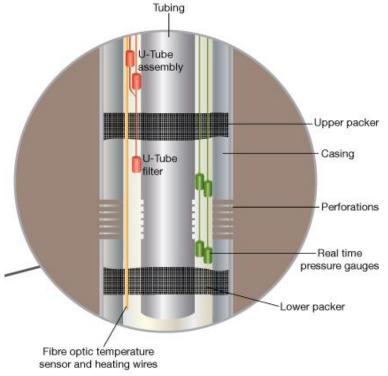
$$G_{CO_2} = A h_g \phi \rho E$$

- $G_{CO_{\gamma}}$ = Volumetric storage capacity
- A = Area (Basin, Region, <u>Site</u>) being assessed
- h_g = Gross thickness of target saline formation defined by A
 - = Avg. porosity over thickness h_g in area A
 - = Density of CO₂ at Pressure & Temperature of target saline formation
 - = Storage "efficiency factor" (fraction of total pore volume filled by CO₂)

The \$15M question: how to determine Sgr?

NETL DOE, 2006

ρ


Stage 2b – Residual Saturation Tests

- Objective: Determine the residual CO2 saturation, Sgr
- Five (5) independent measurement approaches to determining residual trapping:
 - Saturation logging using Residual Saturation Tool
 < 1 m
 - Thermal test ~1-2 m
 - Tracer tests ~4-10 m
 - Pressure test < 20 m</p>
 - Dissolution Test < 1 m

Hydraulic pressure test

- Pressure data are sensitive to residual gas saturation
- Pressure sensors are installed above and below the perforation
- Pressure transients are recorded to infer the amount of gas trapped in the formation

→ *Pressure change depends on relative permeability*

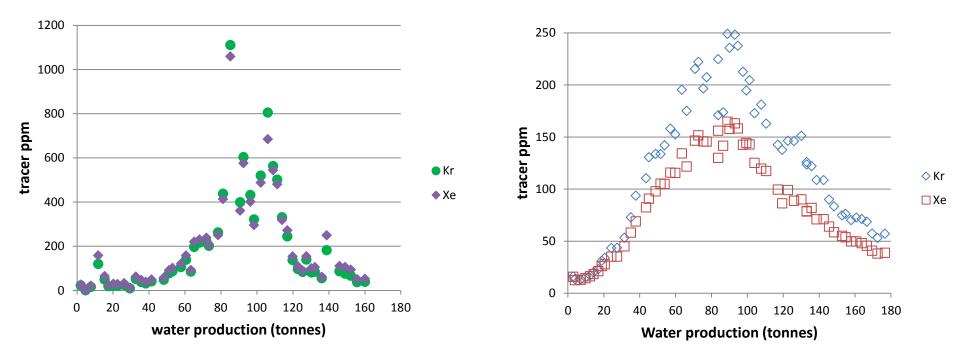
 \rightarrow Relative permeability depends on residual gas saturation

Noble Gas Tracer Test (Kr-Xe)

- Tracers are injected into the formation with water and then back produced (U-Tube sampling)
- Noble Gas Tracers partition between aqueous and CO2-rich phase
- Portions will partition into the gas and become immobile (hence not produced back)
- Tracers in water remain mobile and are being back produced

 \rightarrow Measured with GC's and MS's in Mobile Geochem Lab

→ Residual saturation can be inferred by comparing Break Through curves



Tracer Injection

Kr-Xe Partitioning

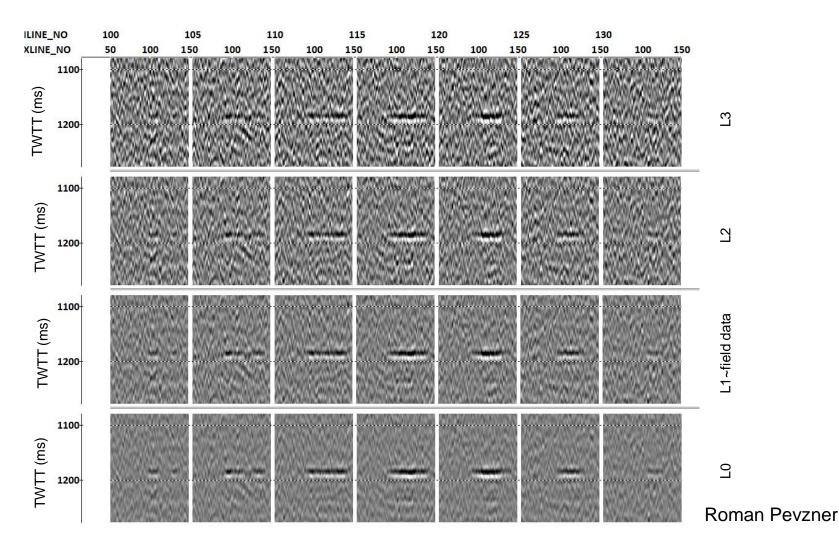
Baseline Test (100% Pore Water)

O O

Residual CO2 Saturated

The impact of Otway Stage 2B (Residual Gas Saturation & Dissolution Test)

- 1. Developing a **single-well test** for reservoir characterisation (porosity, permeability, capillary pressure, and heterogeneity).
- 2. Determination of Sgr through different techniques.
- 3. Different techniques provide different depth of investigation into the reservoir, from cm to several 100m (time dependent).
- 4. Sgr is required for calculation of CO2 quantity stored in the pore space by residual trapping.
- 5. CO2 residually trapped (permanently stored) is key for immediate safe and long-term storage.



Next research phase: Otway Stage 2C

Research Aim	Goals	Success Criterion
	 Demonstrate the detection of gas using 4D seismic monitoring. 	A gas plume with sufficiently high column and areal extent developed for the 4D signal to exceed the noise level using at least one of the monitoring technologies (see section x).
	2. Monitor plume evolution and match refine plume migration forecast via iterative dynamic modelling.	Deviations from modelled injection performance and plume distribution detected through monitoring. Match achieved between monitoring findings and predictive model.
Safely demonstrate stabilisation of CO ₂ in a deep unconfined aquifer:	 Evaluate characteristics of different seismic techniques to optimally monitor CO₂. 	Several different seismic monitoring techniques applied (see section x) and quantitatively compared (i.e. sensitivity, S/N Resolution, Coverage), relative to environment, ease of acquisition and cost.
	 Confirm 'point of stabilisation' through monitoring validation of dynamic model predictions. 	The plume stabilisation, predicted by dynamic modelling, validated by direct verification of seismic- scale plume immobilisation between time-lapse observations.

Seismic modelling for 30kt injection of CO2

Thank you

CO2CRC Participants

