

Prospect evaluation, resource assessment and risking

Prospect evaluation

Knut Henrik Jakobsson Norwegian Petroleum Directorate

Inger Fjærtoft

Purposes of prospect evaluation by the government

- Basis for recommendation for which blocks should be awarded and proposals for work commitment for licenses
- Basis for evaluation of applications for licenses or bidding rounds
- A state participation can be decided on basis of the evaluation carried out by the government in addition to the applicants/bidders

The Norwegian licensing round

•

Volumetric calculation

What is the recoverable hydrocarbon quantities of this accumulation ?

$R_{vol} \times N/G \times por \times S_{hc} \times F.v.factor \times Rec.f.$

Recoverable resources

In-place resources (HCPV at surface conditions)

HCPV (hydrocarbon porevolume)

HCPV (hydrocarbon pore volume)

Rock_{vol} x Net/Gross x porosity x Saturation_{hc}

The rock volume

Interpretation and mapping

- Seismic interpretation
- Digitizing, map construction
- Depth conversion

Geometric description

- Vertical closure
- Spillpoint relations
- Trap fill
- Uncertainties in interpretation, mapping and depth conversion

ROCK VOLUME OF THE TRAP =

The volume between the top surface and the HC-contact minus

the volume between the bottom surface and the HC-contact

The maps

A bottom surface map is not required, when:

- the reservoir thickness > vertical closure
- the reservoir thickness is constant

Gross rock volume, some North Sea fields

HCPV (hydrocarbon pore volume)

Rock_{vol} x Net/Gross x porosity x Saturation_{hc}

trap definition trap reservoir parameters

Reservoir description

Simplified litostratigraphy

GR Sonic

Reservoir parametres

- Reservoir thickness (constant or variable)
- Net/gross ratio (average)
- porosity (average; > cut-off value)
- HC-saturation (average)

Gross thickness

Should be taken care of in the mapping procedure...

Net pay

NET PAY =

The total thickness of all reservoir units (a-h) with

porosity > threshold value and permeability > threshold value

Porosity

- Calculated from electric well logs
- Core measurements

Average porosity larger than cut-off value

Poroperm plot

Measured porosities and permeabilities are plotted in a XYdiagram...

...in order to establish the cut-off value of efficient porosity

permeability (md)

HC-saturation

Hydrocarbon saturation is the pore volume fraction which contains hydrocarbons

$$S_{HC} = 1 - S_{water}$$

- Hydrocarbon saturation (S_{HC}) is estimated from log analysis
- Only zones with efficient porosity are included

Spread in input data

	<u>min.</u>	expected	max.
rock volume	X	X	X
net/gross ratio	X	X	X
porosity	X	X	X
hydrocarbon saturation	X	X	X

= Hydrocarbon pore volume (HCPV)

- When we move hydrocarbons (HCPV) from the reservoir to the surface, physical conditions as pressure and temperature are changed...
 - the oil volume is shrinking, and
 - the gas volume is expanding

Oil to the surface...

NPD •

In-place resources

In-place resources = HCPV x Formation volume factor

- "GOIP" Gas Originally in-place
- "STOOIP" -

Stock tank Oil originally in-place

Recoverable resources

Recoverable resources =

In-place resources x recovery factor

Depending on drive mechanisms and production strategy, the recovery factor in general varies:

- between 50 and 80 % for gas
- between 25 and 70 % for oil

Recovery factors for some Norwegian oil fields

Middle Jurassic sandstones

Cretaceous chalk (carbonates)

Recoverable and in-place resources

HCPV - prognosis vs result

- There is clearly a tendency to overestimate HCPV
- The same conclusion can be made for BRV, HCCOL, and reservoir thickness
- The wider result distribution as compared to prognosis distribution indicates that industry estimates a too narrow range of most likely outcomes

Conclusions,

- volume assessments

- As explorers, we find less than we predict.
- Explorationists put too narrow ranges on possible outcomes for field sizes and volumetric parameters.
- The above statements are generally valid for any play and trap type, phase, pre-drill probability of discovery and distance to nearest well, however there is a tendency to do better in regions of longer exploration history.
- Bulk Rock Volume (and behind that hydrocarbon column) is clearly the parameter explaining most of the differences between pre- and post-drill hydrocarbon pore volume.

Recommendations, - volume assessments

- We need to improve our volume and parameter estimations!
- Expand ranges of possible outcomes for the volumetric parameters. Our prediction capabilities are poor.
 - Uncertainties related to seismic interpretation, depth conversion, and petrophysical parameter prediction are larger than what is generally perceived
- Spend the time evaluating a prospect according to the importance of the parameters.
 - Bulk Rock Volume should get the highest attention

Risking resources - geological risk analysis

Inger Fjærtoft Norwegian Petroleum Directorate

Petrad course: Policy and management of petroleum sector development,

Stavanger September 2006

Risk analysis

What is the chance of finding the minimum amount of recoverable hydrocarbons as estimated in the prospect assessment ?

Some Definitions

"There is a *RISK* that I am going to fall off this cliff and I am *UNCERTAIN* how far it is to the bottom!"

Risk - Probability

Probability = 1 - Risk

Success rate = $\frac{no. of hits}{no. of trials}$ = 8/14 = 0.57

Probability categories

Stochastic probabilities

- measured values
- success rates, etc

Objective probabilities

- logical arguments,
- analogue events, etc

Subjective probabilities

- beliefs,
- "guts feeling", etc

The independent risk factors - NPD's risk factors

Probability of discovery:

P = *P*1 *x P*2 *x P*3 *x P*4

...where:

- P1 probability of efficient reservoir
- P2 probability of efficient trap
- P3 probability of efficient source & migration
- P4 probability of efficient retention after accumulation

Probability of discovery

The estimated prospect probability is not the probability of making a discovery, but:

The probability of finding at least the minimum quantity of hydrocarbons we estimated in the resource assessment.

Reconstruction of the hydrocarbon accumulation process

Sum up - Main principles Independent risk factors for:

The probability of finding at least the minimum quantity of hydrocarbons we estimated in the resource assessment.

Probability of discovery

- High risk prospects are risked too low
- Low risk prospects are risked too high

PROBABILITY OF DISCOVERY

Prospect prognosis and drilling results:

Analysis of discoveries from 1990-2002

50% In place (Mill. b o.e.) 45,000 40,000 ■ Prognosis prior to drilling ■ Status 2002 35,000 30,000 25,000 50% 20,000 15,000 35% 85% 10,000 5,000 0 **Total** Oil Gas

NPD