

CCS & the global climate change issues

CCOP-Norway EPPM Program 3rd Seminar

Project Director Eva Halland Norwegian Petroleum Directorate

Bangkok 11 November 2010

Outline of my talk

1 Why CCS & what are the current issues?

Climate issue Reduce the CO2 content in the produced gas Use CO2 for enhanced recovery Find storage sites

2 Mapping of suitable CCS reservoir

Criteria & process of selection Cross-boarder collaboration- challenges and solutions Tools & capacities needed Case studies

3 Role(s) of geosciences

Norwegian Petroleum Directorate

- Subordinate to the Ministry of Petroleum and Energy (MPE)
 - Advisory body to the MPE
 - Exercise management authority
- Established 1972 in Stavanger
- 220 employees; engineers, geologists, economist etc

The Norwegian Petroleum Directorate will contribute in **creating the greatest possible value for society from oil and gas activities by means of prudent resource management**, based on safety, emergency preparedness and safeguarding the natural environment.

CO₂- emissions from Norwegian sources

S Potential: up to 20% of needed reductions

Source: IEA, Energy Technology Perspectives (2008a).

KEY POINT: Without CCS, overall costs to halve CO₂ emissions levels by 2050 increase by 70%.

Internationally

Testimonial

"If we want to reduce our greenhouse gas emissions by 80% in 2050, we certainly need Carbon Capture and Storage" (Andris Piebalgs, EU Energy Commissioner)

he European Council has called for a emonstration programme of up to 12 arge-scale CCS projects to be perational by 2015

"We strongly support the recommendation that 20 large scale CCS demonstration projects need to be launched globally by 2010, with a view to supporting technology development and cost reduction for the beginning of broad deployment of CCS by 2020."

G8 Statement of June 2008

CO₂ active projects

O2 value chain

CCS – just expensive or good value-creation?

✓Gas with high CO₂ content - Sales gas specification (Sleipner, Snøhvit)

Enhanced hydrocarbon recovery

Increased industrial production

✓Offer good quality storage sites – business opportunities

.. and reduce the CO₂ emission to air

9

12/11/2010

Four Large CO2 Commercial Projects in Operation

Operator: Statoil

1 million tonnes of CO2/year

Operators: BP, Statoil and Sonatrach 0.8-1.2 million tonnes of CO2/year Operator:Statoil 0.7 million tonnes of CO2/year Operator: EnCana 1.8 million tonnes of CO2/year

Storage of CO₂ in the bedrock: an illustration

Sleipner CO₂ separation and injection

- Started in 1996 10 year of CO2-injection in October 2006
- Separating and injecting nearly 1 mill. tons CO2 annually
- Storing in saline aquifer above natural gas reservoir
- **Driver: the ~45US\$/ton CO2-tax imposed in 1992**
- Learning and confidence building through a series of large EU-wide R&D rograms

Sleipner case

Snøhvit LNG with CCS

- iped CO2 separated from natural gas (5-8% CO2) in nshore LNG plant, and re-injecting in sandstone elow natural gas reservoir
- 45 km subsea pipeline transport.
- CS started April 2008 capacity 700,000 ton/yr

CO_2 to EOR a technical potential in the Norwegian fields

For 20 oilfields: 150-300 million Sm³ extra oil, 3-7% (2005) Need: 25 Mt CO₂/year for 30 years

IF enough CO_2 could be made available at the optimum time in their production life at commercial conditions.

Based on collaboration with the Petroleum industry

÷ L OLJEDIREKTORATET

Two FME in CO₂ storage (Centre for Enevironment Friendly Energy research)

BIGCCS : 2009-2016, 22 partners SUCCESS: 2009-2016, 8 partners

CO₂ Storage Forum, chaired by NPD

Norwegian CO₂ regulations on CO₂ Storage and Transport, are in progress

NPD will give recommendations to The Ministry regarding where to store- and who will be allowed to store CO₂ offshore Norway.

Safe storage of CO₂

- NPD
- 8 Storage depth \succ Traps \triangleright Seal Storage capacity a 10 Injectivity – pressure build up SOLID SUPERCRITICAL CO₂ Temperature and Pressure diagram 100 LIQUID 1000 **Critical Point** psia) Ground level CO_as a gas Pressure Depth (km) - Critical depth (approx) 0.28 VAPOR **Triple Point** 0.27 0.27 900 20 10 Density of CO, (kg/m3) -120 200 Temperature (°F)

Deep saline aquifers

 $M_{CO2e} = A \times h \times \phi \times \rho_{CO2r} \times S_{eff}$

- M_{CO2e}: effective storage capacity
- A: area of trap or regional aquifer
- h: average height of aquifer × average net to gross rat
- φ : average reservoir porosity
- ρ_{CO2r}:
 CO2 density at reservoir conditions
- S_{eff}: sweep efficiency (estimated)

Typical S_{eff} ranges for structures: 5 – 40 %

Suggested S_{eff} for regional aquifers: 2 %

CO₂ storage capacity offshore Norway (preliminary) one north sea 2008 A Norwegian- UK initiative 2009 Modelled Mt CO₂ storage capacity in saline aquifers Total conservative European storage capacity is 117 Gt CO₂ Reference Country 2030 storage (Mt) 2050 storage (Mt) 96 Gt in deep saline aguifers GeoCapacity Denmark 16.672 20 Gt in hydrocarbon fields GeoCapacity 1 Gt in unmineable coal beds Germany 27,120 GeoCapacity Netherlands 438 Norway²⁰ NPD 48,488 97.059 GeoCapacity 25 % is storage capacity offshore Norway **United Kingdom** 60,971 and SCCS (2% efficiency) 153,689 202,260 Total More detailed work in progress

Ranking criteria

					Ranking cin				
	R	anking	criteria		Choice	Definition/ comments			
					Effective seal	2 or more barriers, relevant thickness. NPD			
quality		Defined trap		2	Seal present	1 barrier			
	rap 1cy			1	Lack of seal	Barrier not present			
	otal t fficiei	Undefined trap		3	Effective unconventional seal	2 or more barriers, relevant thickness. And extension			
	e 1			2	Probable unconventional seal	e.g. well integrity			
				1	Lack of seal Not present				
	3Faults1			3	No trough-going faults	No faults penetrates trough the seal			
				2	Uncertainty of trough-going faults	Uncertain interpretation			
				1	Trough-going faults	High risks of insufficient seal			
	Porosity			3	Good porosity	Equal to or more x % or more			
				2	Possible good porosity	Based on known information			
>				1	nsufficient/ no porosity	No proven effective porosity			
	Permeability 1 Depth to top reservoir 2 1			3	Good permeability	Equal to or more than x mD.			
lit				2	Possible good permeability	Based on known information			
enb				1	Insufficient/ no permeability	No proven effective permeability			
				3	> 800 m – 2500 m (3000 m)	800 m below surface due to CO2 in supercritical fluid phase. 2500 m (3000) for technologicall reasons.			
				2	> 600 m	Depending on pressure and temperature data from the area			
				1	shallower	Unsuitable for storage, CO2 in gas phase			
			Good data /qua	litv	Limited dat	ta/ quality Poor data /qualit			

Dry-drilled geological structures

Utsira Formation

Johansen Formation

and the fit

_	. 20000								
	Formation summary								
	Qua	adrant	Max thickness	Porø. Perm.			Seal	trap	
	3.	1/32	Ca 80 m	20-30 %	500- 6000 (Well 31/2-	mD G -3) 50	Dunlin ruppen (1) 00 m sand/ shale (2)	Stratigraphy 2200-3500 m dyp	
						D			
Ļ	Seal Ranking				Reservoar rank			ing	
	Туре	Type Effectivness		Faults	Porosity	Permea	ability	Depth	
	К 3		3	2		3 3		3	
	Storagecapasity			Theoretical				Effective	
					Х			Х	

Evaluation of CO₂ sequestration in the Frigg Field

10 Million Sm3/day: 8 Million tonns of CO_2 for 55 years 50 Million Sm3/day: 3 Gtonns of CO2 for 85 years

NORTH SEA BASIN TASK FORCE

Bundesministerium für Wirtschaft und Technologie

The aims of the North Sea Basin Task Force are to develop broad, common principles that could form a basis for regulating the storage of CO₂ under the North Sea and to provide a consistent basis for managing this activity.

cooperation with the North Sea countries

Report for: The Notematic Ministry of Petroleum and Energy The UK Foreign and Commonwealth Office

On behalf of: The North Sea Basin Task Force www.nsbtf.org Initiated by the Norwegian and UK Energy Ministers in May 2009

- Identify the storage potential for CO₂ in the North Sea
- Estimate a likely CO₂ storage need for Europe
- Identify plausible matches of sources and sinks
- Identify challenges with regard to transport of CO₂ across countries
- Optimize CO₂ transportation infrastructure

One North Sea – objective

Initiated by the Norwegian and UK Energy Ministers in May 2009

- Identify the storage potential for CO₂ in the North Sea
- Estimate a likely CO₂ storage need for Europe
- Identify plausible matches of sources and sinks
- Identify challenges with regard to transport of CO₂ across countries
- Optimize CO₂ transportation infrastructure

"One North Sea" database

- Storage capacity: based upon Geocapacity project and data from Norwegian
 Petroleum Directorate
- Policies and initiatives to support CCS at EU level and within Norway, UK, the Netherlands and Germany
- Economic modelling of CCS demand
- Analysis of legal and regulatory barriers
- Scenarios of investment in capture, transport and storage in 2030 and 2050
- CO₂ transport and storage scenarios and network
- Several stakeholder meetings

Summary of the market and policy combinations in 2030 used as inputs for the Classic Carbon model

Driving force	Mandatory	Competitive	Fragile	
Power demand	High	Business as usual	Business as usual	
Renewables	90% of 2020 target	90% of 2020 target	100% of 2020 target	
CO ₂ cap	30% reduction relative to 1990	40% reduction relative to 1990	25% reduction relative to 1990	
CCS costs	35% reduction relative to 2008	25% reduction relative to 2008	20% reduction relative to 2008	
CCS efficiency penalty	6% gas, 8% coal	8% gas, 10% coal	8% gas, 10% coal	
Gas prices	\$19/MWh	\$22MWh	\$27/MWh	
Coal prices	\$70/tonne	\$70/tonne	\$70/tonne	
Nuclear	Known investments only	Known and new investments	Known investments only	
Mandatory CCS	New investments from 2020	None	None	

NPD

Map of source-sink connections in 2030 – 'Medium' Scenario

Map of CCS transport and storage in 2030 – 'Very high' scenarid

CO2 transport in 2050 – Very High Scenario. (No restrictions on transport or storage)

CO₂ - transport (rørledning)

$\frac{\text{USA}}{\text{Over 30 års erfaring med}}$ transport av CO₂

<u>Snøhvitfeltet</u> 143 km lang rørledning på havbunnen for transport og injeksjon av CO₂

CO₂ - transport (ship ?)

Existing technology

Available ship technology is not sufficient for transport of large volumes of CO_2

(0,5 tonnes CO_2 per m³)

New technology

Cold liquefied CO₂

Pressurised liquefied CO₂

Legal and reulatory issues

EU CCS Directive National regulations

Cross-border challenges

- Legal rights to transport CO2 across borders
- Regulation of cross-border transport of captured CO2
- Storage complex spanning national boundaries
- Cross border impacts from storage operation
- Emissions accounting
- Mechanism to facilitate cross-border project development

Before CO₂ injection

- Do risk assessment
- Have a good monitoring programme
- Have a clear remediation and mitigation plan

And do a baseline inspection

Monitoring tools

Monitoring of injected CO₂ in the Utsira Formation

Pressure affected area

Year 2621

Year 5019

Year 7018

..and after termination of CO_2 - injection

and a lost of these states of the second

Role(s) of geosciences

- Know your geology
- Trap types
- Trapping mechanisms
- Geological risk
- Leakage rates
- Operational risk
- HSE risk

Geologists in action

Thanks for your attention