Research and Development Centre for Oil and Gas Technology "LEMIGAS"

Ministry of Energy & Mineral Resources (MEMR)

CCS-RESEARCH PROJECTS IN INDONESIA

Workshop on development natural gas resources with high CO2 & CCS in CCOP

Bali 17-20 March 2009

Ego Syahrial, Usman Pasarai, Letty Brioletty, Utomo Pratama I E-mail: upasarai@lemigas.esdm.go.id

OUTLINE

- **❖** INTRODUCTION
- ❖ CCS CO₂ EOR POTENTIAL
- EAST KALIMANTAN CASE STUDY
- SOUT SUMATERA CASE STUDY
- CONCLUSIONS

OUTLINE

- **❖** INTRODUCTION
- ❖ CCS CO₂ EOR POTENTIAL
- EAST KALIMANTAN CASE STUDY
- SOUT SUMATERA CASE STUDY
- CONCLUSIONS

WORD PRIMARY ENERGY DEMAND

INDONESIA'S ENERGY MIX TARGET

Peraturan Presiden No. 5 Tahun 2006

- Reduce Oil Dependency
- Improve Diversification (REN)
- Reduce CO₂ Emission

LEMIGAS

POSSIBLE CCS SYSTEM

Workshop on development natural gas resources with high CO2 & CCS in CCOP, Bali 17-20 March 2009

OUTLINE

- **❖** INTRODUCTION
- ❖ CCS CO₂ EOR POTENTIAL
- EAST KALIMANTAN CASE STUDY
- SOUT SUMATERA CASE STUDY
- CONCLUSIONS

HISTORY OF INDONESIA OIL PRODUCTION

GLOBAL EOR TARGET IN INDONESIA

Total OOIP: 61.1 BSTB

32.6%

Cumulative 19.9 BSTB

59.6%

EOR Target 36.5 BSTB

7.3%

Remaining Reserves of Primary Recovery 4.8 BSTB

CCS - CO2 EOR

- CO₂ injection is proven EOR method to increase oil recovery (incremental up to 10-15% OOIP)
- Some of injected CO₂
 can be trapped in reservoirs

Source: IPCC Special Report 2005

CO₂ INJECTION IN DEPLETED RESERVOIR

- A process whereby CO₂ is Injected into an oil depleted reservoir in order to reduce oil viscosity and density due to swelling effect
- **₹** Environmental Purposes → Carbon Disposal
- Method:
 - 1. Miscible (Incremental RF = 10-15% OOIP)
 - WAG
 - Continuous
 - Huff and puff
 - 2. Immiscible (Incremental RF = 3 9 % OOIP)

AREA FOR CCS POTENTIAL

OUTLINE

- **❖** INTRODUCTION
- ❖ CCS CO₂ EOR POTENTIAL
- EAST KALIMANTAN CASE STUDY
- SOUT SUMATERA CASE STUDY
- CONCLUSIONS

EAST KALIMANTAN CASE STUDY

- Potential
 - Sources: Bontang LNG/LPG Plant
 - Storages: Depleted Reservoir in Handil,
 Attaka, Bekapai, Sangata
- Reservoir Screening for CO₂ EOR
- Laboratory Works
- CO₂ Sequestration Modeling @ Depleted Reservoir

LEMIGAS

CO₂ STORAGE – EOR POTENTIAL IN EAST KALIMANTAN

CO₂ STORAGE – EOR POTENTIAL IN EAST KALIMANTAN

Rule-of-Thumb Approach (historical experience)

- Incremental Oil Recovery (% OOIP)
 - **> 8-16 %**
- Gross CO₂ Utilization (Mcf/Bbl)
 - > 5-10 Mcf/Bbl
- Net/Gross Utilization Ratio (fraction)
 - **>** 0.5

LABORATORY WORK FOR MMP DETERMINATAION

GEO – RESERVOIR MODELING

GEO – RESERVOIR MODELING

- Objectives:
 - Increase oil recovery
 - Volume of CO₂ sequestered
- Implement after primary recovery reached 13.3 % OOIP
- Use 20 injection wells

CO₂ Injection Scenario

Injection Scenario	Maximum Injection Rate (MSCF/D)	Injection Pressure (Psia)
Continuous CO ₂ Injection (Down Dip Injector)	40,000	2860
Continuous CO ₂ Injection (Up Dip Injector)	40,000	2860
1:1 WAG CO ₂ Injection	40,000	2860

RESULTS (1 of 2)

- 1. 10 reservoirs are suitable for CO₂-EOR
- 2. Screening Reservoirs from MMP
 - MMP > current reservoir pressure
 - 3 reservoirs above 0.8 psi/ft were eliminated (above p_f)
- 3. Rule of Thumb Method:
 - Potential Oil Recoveries of 3.6 7.2 MMSTB
 - Sequestration volumes of 0.5 2.1 Million tons

RESULTS (2 of 2)

4. The Results of Laboratory Study:

- The MMP was 2850 psig
- The result of CO₂ injection at 3000 psig reveals that the recovery factor was 93.3% OOIP after 1.2 PV CO₂ injected.
- The recovery factor of 2500 psig CO₂ injection after waterflooding was only 21.3% OOIP

5. The Simulation Results:

- Continues CO₂ injection
 - Potential oil recoveries of 2.6 3.3 MMSTB
 - Sequestration volumes of 4.7 4.9 Million tons
- 1:1 WAG
 - Potential oil recoveries of 2.4 MMSTB
 - Sequestration volumes of 2.2 Million tons

OUTLINE

- **❖** INTRODUCTION
- ❖ CCS CO₂ EOR POTENTIAL
- EAST KALIMANTAN CASE STUDY
- SOUT SUMATERA CASE STUDY
- **CONCLUSIONS**

SOUT SUMATERA CASE STUDY

- 1. Reservoirs screening
- 2. Laboratory study
- 3. Compositional simulation study using:
 - Hypothetic reservoir data
 - "X" Field reservoir fluid data
- 4. Define the most promising CO₂ injections method and determine the amount of CO₂ stored

CO₂ INJECTION METHODS

- 1. Miscible
 - (Incremental RF = 10-15% OOIP)
 - WAG
 - Continuous
 - Huff and puff
- 2. Immiscible

(Incremental RF = 3 - 9% OOIP)

LEMIGAS

WATER ALTERNATE GAS (WAG)

WAG: CO2 Injection Process whereby the water is being injected behind CO₂ Slug (as illustrated above)

SCREENING FOR WAG CANDIDATES

Parameter	Optimum	Weight
API Gravity	37	0.24
Oil Saturation %	60	0.2
Pressure/MMP	1.3	0.19
Temperature, ⁰ F	160	0.14
Net Oil Thickness, ft	50	0.11
Permeability, mD	300	0.07
Dip, ⁰	20	0.03
Porosity, %	20	0.02

RESERVOIR FLUID DATA

- Carbonate reservoir
- Fluid properties:
 - $P_{\rm b} = 1553 \text{ psig}$
 - ✓ Gravity =35.5 °API
 - $T_{resv} = 265^{\circ}F @ 5880 ft$

CALCULATED WELLSTREAM COMPOSITION

Component		Mole Percent	Weight Percent	
Hydrogen Sulfide	H ₂ S	0.01	0	
Carbon Dioxide	CO ₂	3.51	1.11	
Nitrogen	N ₂	0.29	0.06	
Methane	C ₁	31.3	3.62	
Ethane	C_2	3.74	0.81	
Propane	C ₃	5.45	1.73	
Iso-Butane	i-C ₄	1.62	0.68	
n-Butane	n-C ₄	2.43	1.02	
Iso-Pentane	i-C ₅	1.66	0.86	
n-Pentane	n-C ₅	1.45	0.75	
Hexanes	C ₆	2.45	1.52	
Heptanes Plus	C ₇₊	46.09	87.84	
Total	100	1		

Properties of Heptanes Plus:

API Gravity @ 60° F : 32.31Specific Gravity @ $60/60^{\circ}$ F : 0.8613Molecular Weight : 264.74

RELATIVE PERMEABILITY DATA

PVTi CHARACTERIZATION

- To generate PVT data from the laboratory analysis of oil and gas samples
- Correlations:
 - □ EOS
 - Viscosity

- = 3-Parameter Peng-Robinson
- = Lohrenz-BrayClark
- Standard conditions:
 - □ T

 $= 60.0000 \, ^{\circ} F$

 \Box P

= 14.6959 Psig

SIMULATION DATA

PARAMETERS	QUANTITY
Grid Dimension	20 x 10 x 10
Model Dimension	2000 x 1000 x 400 (ft ³)
Average Porosity	0.2 (fraction)
Average Horizontal Permeability	134 mD
Average Vertical Permeability	14.7 mD
Datum	5813 ft
Pressure @ Datum	2230 psia
Base Case : •Injection Gas Rate • Injection Water Rate	1000 Mscfd 3000 stb/day
Injection Period Interval	91.25 days
BHP Target	3100 Psia
Production Well Economic Limit •Max. Water cut •Max. GOR	100 % 10 MMscf/STB

PRODUCTION PROFILE COMPARISON

Workshop on development natural gas resources with high CO2 & CCS in CCOP, Bali 17-20 March 2009

WAG BASE SCENARIO

SIMULATION RESULTS

PARAMETERS		BASE -CASE	GAS = 1000 MSCFD			WATER = 3000 STBD		
		GAS = 1000 MSCFD	WTR 2000	WTR 1000	WTR 500	GAS 3000	GAS 2000	GAS 500
		WTR = 3000 STBD	STBD	STBD	STBD	MSCFD	MSCFD	MSCFD
Prod. Period	(YEARS)	9.23	9.23	8.73	8.23	8.98	9.48	9.23
Injected CO ₂	(BSCF)	3.373	3.373	3.190	3.008	10.118	7.110	1.686
Produced CO ₂	(BSCF)	0.569	0.557	0.529	0.510	1.001	0.810	0.459
Trapped CO ₂	(BSCF)	2.803	2.815	2.661	2.498	9.117	6.300	1.227
Cuml. Oil.Prod	(MMSTB)	9.611	9.540	9.168	8.590	9.769	9.807	9.482

SUMMARY SOUTH SUMATERA CASE STUDY

- 1. WAG enhanced oil recovery to 22% OOIP
- 2. WAG was the best production profile compared to CO₂ continuous flooding
- 3. Slug ratio was critical parameter in WAG injection
- 4. Almost 90 % of injected CO₂ trapped in reservoir therefore CO₂ EOR is promising as carbon disposal

CONCLUSIONS

- CCS-EOR will be high on agenda
- Huge potential of oil recoveries and CO₂ sequestration volumes is in East Kalimantan and South Sumatra
- CCS on saline aquifer in Natuna
- Demonstration projects are needed funded by international sources
- National regulatory framework is needed

MAIN ISSUES AND CHALLENGES

- No public awareness of CCS and little technical CCS capacity in Indonesia
- CCS costs must be reduced
- No legal and regulatory frameworks
- Need accelerating investment R&D
- Demonstration projects are needed funded by international sources

AREA FOR COOPERATION

- Knowledge sharing and capacity building
- Study on site of geological storage and CO₂ sources
- $CCS CO_2 EOR$
- Study on CCS in Natuna
- Pilot demonstration project
- Established national regulatory framework for CCS
- Enhanced Coalbed Methane Recovery (ECBM)

END

Thank you for your attention!

CO₂ STORAGE – EOR POTENTIAL IN EAST KALIMANTAN

Reservoirs Selection:

- Based on the availability data
- Meet the screening criteria and remaining oil reserves > 10 MMSTB
- 110 reservoirs at Attaka-Handil-Bekapai fields with total OOIP of 3,317 MMSTB

LEMIGAS

OIL RECOVERY AND STORAGE VOLUME ESTIMATE BY RULE OF THUMB - EAST KALIMANTAN

		Incremental Oil Recovery (%OOIP)				
		8%	12%	16%		
ū	5 MCF/BBL	265 MMSTB	398 MMSTB	531 MMSTB		
Utilization		38 MMtons	57 MMtons	76 MMtons		
	7.5 MCF/BBL	265 MMSTB	398 MMSTB	531 MMSTB		
CO ₂		57 MMtons	85 MMtons	114 MMtons		
Gross	10 MCF/BBL	265 MMSTB	398 MMSTB	531 MMSTB		
9		76 MMtons	114 MMtons	152 MMtons		

[✓] Oil recoveries of 265 – 531 MMstb

[✓] Storage volume of 38 -152 MMtons