

Field	Operator	Oil saturation	Thickness	Status
Denver Unit	Altura	From high to low	about 30 m	Ongoing
Seminole Unit	Amerada Hess	About 32%	about 60 m	Phase 1: 500 acres / 25 wells
South Creek	Mobil	-		CO2 injection in naturally flooded area
The pro	ocess is e as	fficient due t vaporization	to composition and swellin	onal effects such ig.

ST	O and brine				
No	Type of flood	Rock	Conditions	Start conditions for CO ₂ -flood	S _{or} (CO ₂)
1	Viscous displacement	Berea sandstone	30°C, 340 bar	100% oil saturated	0.01
2	Viscous displacement	Liege chalk	90°C, 340 bar	S _{orw}	0.00
3	Diffusion dominated (simulating fracture)	Liege chalk	90°C, 340 bar	S _{orw}	0.10

According to Kinder-Morgan-EL	_CAM (CENS) study
	\$ per Tonne
 Delivered price for CO₂: Less SAVINGS: 	\$35
- Taxes - Oil and Gas Industry	\$14.5
- Other direct tax benifits	\$4.4
 Prices paid by E&P Companies 	\$12.0
Total SAVINGS	\$31.0
<u>NET Cost - CO₂ for IOR</u>	\$4.0
30+ million tons per year CO ₂ emission reduc	tion