

Need for innovation

- Increase in energy demand
- Oil production
 - Sweeping efficiency 60 %
 - Displacement oil 60 %
 - around 36 % oil actually recovered
- Quote Dr. Abdallah S. Jum'ah, former CEO Saudi Aramco
 - ... increasing recovery by just one percent could add about 80 billion barrels of oil to global reserves equivalent to nearly a quarter-century's worth of Saudi Aramco's current production.

Reservoir management: water injection

Water is injected to displace the oil towards the production well

history matching

1. n. [Reservoir Characterization]

The act of adjusting a model of a reservoir until it closely reproduces the past behavior of a reservoir. [: : :] Once a model has

been history matched, it can be used to simulate future reservoir

behavior with a higher degree of condence, particularly if the adjustments are constrained by known geological properties in the

reservoir.

source: Schlumberger Oilfield Glossary.

Three examples of history matching

Purpose of History Matching

History Matching a 2D model with the Ensemble Kalman Filter

Experiments were performed with a 2D oil reservoir simulator (J.D. Jansen, TU Delft/Shell)

Uncertain parameter: permeability

History Matching a 2D model with the Ensemble Kalman Filter

Experiments were performed with a 2D oil reservoir simulator (J.D. Jansen, TU Delft/Shell)

Uncertain parameter: permeability

Production data from producers and pressure from the injector were assimilated using the Ensemble Kalman Filter

$$\begin{aligned} \mathbf{A} &= [\mathbf{x}_1, \dots, \mathbf{x}_N], \ \mathbf{Y} = [\mathbf{y} + \mathbf{n}_1, \dots, \mathbf{y} + \mathbf{n}_N] \\ \mathbf{P} &= \frac{1}{N-1} \mathbf{A}' \mathbf{A}'^T, \qquad \text{where} \quad \mathbf{A}' = \mathbf{A} - \frac{1}{N} \sum_i \mathbf{x}_i \\ \mathbf{A}_a &= \mathbf{A}_f + \mathbf{P}_f \mathbf{H}^T (\mathbf{H} \mathbf{P}_f \mathbf{H}^T + \mathbf{R})^{-1} (\mathbf{Y} - \mathbf{H} \mathbf{A}_f) \end{aligned}$$

The added value of including additional saturation information in the history match procedure was determined on the basis of the quality of subsequent forecasts.

Experiments with a 2D reservoir model I. Unconstrained ensemble run

Experiments with a 2D reservoir model I. Production data only

Experiments with a 2D reservoir model II. Low accuracy seismic

Experiments with a 2D reservoir model III. High accuracy seismic

Estimation of permeability

Example 2

Reservoir management: water injection

 Early water breakthrough: the injected water often quickly finds its way to the producer due to reservoir heterogeneities

Model based optimization

Example: sweep efficiency in water flooding case
Method used: ensemble based robust well control optimization

residual oil saturation in a faulted reservoir

reference

optimal control

Thin oil rims

Gas coning control

Problems due to dominant gas phase:

- May result in uneconomical production / flaring
- Damage topside equipment
- Decrease in reservoir drive

Gas Coning Control

- Asset with
 - Gas breakthrough
 - Wax deposition
 - Many wells need shutin after two weeks
- Investigate use of wellhead controllers to bring wells to continuous production

Approach

- well-reservoir model that tracks coning behavior, includes thermodynamic for waxing
- Validated on production data

Results

- Simulations show for what wells continuous closed loop production with flow controller is option
- Implementation (current): simulation model is used to improve time dependant tuning of controllers

Closed-Loop - Model-Driven - Real-Time **Production optimization -** *Long-Time Wish*

Closed loop reservoir management

- Focus on increasing sweeping efficiency
- Increasing the displacement of oil along swept streamlines
- Combination with EOR techniques

Viscosity of oil, brine or gas Density & IFT

