CCS and enhanced hydrocarbon recovery

Cor Hofstee et al.

TNO | Knowledge for business

CCS, enhanced hydrocarbon recovery

CO₂-Injection in Europe

Storage opportunities

CCS, enhanced hydrocarbor

Theoretical Storage capacity

CO2 storage capacity of released depleted gas fields

Off-shore fields

• Pipelines

CCS, enhanced hydrocarbon recovery

г

П

The State

On-shore fields shore

Public perception

Competition of gas storage etc.

Risk assessment

De Lier Field Background/History

- -Shallow (1400-1600 m) Gas field & Oilfield, 53 wells drilled
- -Production started 1958.
- -100% NAM share (Rijswijk Concession)
- -11 wells for gas production, 9 wells produced, peak 0.6 mln Nm3/d
- -Production Ceased 1992

- •Stacked reservoir
- •Most wells completed in lower oil Most stack
- depleted gas stack

Notional Surface Scope

Compositional Reservoir simulation

PVT (CO 2)

Transport and behavior (CO 2 and other gas Com ponents) p

Injection strategie

Input data

CCS, enhanced hydrocarbon recovery

SEAL/FAULT integrity

Model: A 2D FE DIANA model (10x3 km)

Model input: Pressures

CCS, enhanced hydrocarbon recovery

Results: stress change

The largest stress change at reservoir edges : depletion (left) and injection (right)

Long-term chemical effects in reservoir

PHREEQC

High Quartz Content Low chemical reactivity Low buffering capacity

k lncreased porosity

Long-term chemical effects in seal

Significant re-arrangement minerals

Decreased porosity

CCS, enhanced hydrocarbon recovery

Short term chemical reactions

CCS, enhanced hydrocarbon recovery

Cement plug lengths according to Dutch Mining Law

Chemical degradation of Portland cement

Source: Barlet-Gouedard *et al.* **2006**

Watersaturated supercritical CO $_2$ fluid: CO_2 saturated water fluid: $\mathsf{d} \lceil \mathsf{mm} \rceil =$ d [mm d [mm

CCS, enhanced hydrocarbon recovery

$$
[mm] = 0.2622 \cdot \sqrt{t[h]}
$$

$$
[mm] = 0.2182 \cdot \sqrt{t[h]}
$$

Chemical degradation of Portland cement

All plugs were pressure tested according to DML standards

Cement plug testing as prescribed by Dutch Mining Law

DML requires a cement plug to be tested by passing at least one of the following tests successfully:

- •Wei ght test of at least 100 kN
- •Pressure test of at least 50 bars during 15 minutes
- • Inflow testing the well and verification that no fluid or gas flows from the reservoir into the well

Two main concerns: the first

Two main concerns: the second

Questions: corrosion and leakage rates?

CCS, enhanced hydrocarbon recovery

Resources used for rough corrosion rate estimation in radial well direction

Cement (1 inch)

- •Barlet-Gouedard et al. (2006) > 1 year
- •Duguid et al. (2006) \leq 700 years
- •Duguid et al. (2004) \sim 60 – 110 years

Casing

- De Waard & Lotz (1993) \sim 20 mm / year
- •**Carvalho et al. (2005)** $\sim 0.3 - 0.9$ mm / year
- Cui et al. (2004)
- •• George (2003)

 $<$ 30 – 2.5 mm / year < 6.3 mm / yea r

Conclusion operator

• The operating company decided not to conduct the project and is looking now at other cases with control on abandonment

Comparison with oil field

- Lower ultimate recover y
- Seal only proven for high-viscosity fluids
- Many production/water injection wells

Enhanced hydrocarbon recovery

CCS, enhanced hydrocarbon recovery

Drivers CO_2 enhanced hydrocarbon recovery

- Climate change
- Energy supply

A lot of interests of public, governments

CCS, enhanced hydrocarbon recovery

Enhanced gas recovery

Tracer Analysis

Determination Breakthrough

Investigation retardation process

Two tracers: 1,3-PDMCH & PMCP

1 kg of each tracer were injected in well K12-B6

Sampling of produced gas at K12-B1 and -B5

Date injection: 1 March2005

fluorine \bullet

carbon

1,3-PDMCH PMCP

п

Tracer Analyse

Breakthrough well K12-B1 after 130 days

Breakthough well K12-B5 after 460 dagen

Solubility CO2 >> CH4 and tracers

Retardation of CO₂

Recovery: 54% per 1,3 PBMCH

33% van PMCP per september 2008

CO2 Massabalans en EGR

Compartiment was voldoende accuraat gemodelleerd

Original CO₂-concentration compartment 3: 13%

Current CO2-concentration at well K12-B1: > 20%

Quantity of CO2 injected (jan. '09): 50 kT

Additional gas produced from compartiment 3: so far 50 mln. Nm3

Oil Recovery

Total production ⁼ sweeping efficiency * production per swept volume.

Example: a) the water flood sweeps 60 % of the field b) the water replaces 65 % of the oil

Then the ultimate recovery is $0.6 * 0.65 = 39 \%$

Introduction

STOIIP 10⁹ BBL

Schoonebeek field NL

25 % produced

CO_2 enhanced oil recovery

Miscible/immiscible (roughly: light oil vs HVO) 90% of floods is miscibleBreakthrough generally between 0.5 and 2 yrs, independent of miscibility Severe gravity override limits RF, independent of miscibility

Principles CO_2 enhanced oil recovery

Immiscible CO_2 flooding Below minimum miscibility pressure (MMP) Partitioning CO $_2$ in oil phase > swelling > lowering viscosity Viscous oil__ For pressures > 80 Bar (steam injection expensive) CO_2 net use: 0.15-0.26 ton/BBL.

Miscible CO_2 flooding Above the MMP, CO $_{\rm 2}$ extracts/puts lighter components of in the oil. Mixtures miscible with original oil. CO_2 net use 0.30-0.52 ton/BBL.

Pseudo ternary phase diagram

Mixture $CO₂$ -intermediate compounds

- Often combination vaporizing/condensing gas drive
- Injected fluid generally does not contain hydrocarbon fraction
- Miscibility is reached in zone proceeded by vaporizing gas drive followed by condensing gas drive.

Sweep efficiency

Gas migration very sensitive to heterogeneities **PVT**

Fine reservoir model required

Injection strategy

• Continuous injection

• WACO water-alternating $CO₂$ More stability for flood less use of expensive $CO₂$

3-fluid relperms **Hysteresis**

A lot of circulation of CO_{2,} separation and re-injection

Gross volume of $CO₂ \approx 2$ ^{*} net volume (purchased $CO₂$)

CO_2 EOR economics

• Extra oil

- Miscible 10-15% STOIIP
- Immiscible 5-7%
- CO $_2$ net consumption
	- Miscible 0.4 t/bbl
	- Immiscible 0.2 t/bbl
- CO_2 purchasing dominates UTC

CO_2 EOR economics, Texas

- West Texas: $CO₂$ cost indexed to oil price Crude @ 50\$/bbl => $CO₂$ @ 33\$/t
- Miscible net consumption 0.4 t/bbl CO_2 purchasing cost: 14 \$/bbl
- Assume CAPEX+OPEX \approx CO₂ costs, so CO₂ EOR miscible UTC: 28\$/bbl
- •• Immiscible UTC estimated at 21 \$/bbl @50 \$/bbl; and 11 \$/bbl @25 \$/bbl

CO_2 EOR economics with increased viscosity

- Assume CO_2 has viscosity increase by factor $10 - 100$
- Vertical sweep Schoonebeek improves by factor of $+/- 2$ (Shell CO₂ sequestration screening tool)
- \Rightarrow extra oil: $2*0.05=10\%$
- Schoonebeek: 50,10⁶ BBL

Complications

- Asphaltene disposition (wells and reservoir)
- Dissolution and subsequent disposition in carbonate reservoirs
- Salt precipitation/ clogging

West Texas : 175 000 bdl/day (was 250000 bbl/day)

90 % miscible, 10 % immiscible 500 mile pipeline

Weyburn: an additional 130 million barrels of oil storage of 30 million tons of CO2 204 mile pipeline

Elsewhere

Hungary, 1969 domestic natural $CO₂$

Bati Raman field, Turkey (Turkish Petroleum Corporation) SPE 106575

- Very viscous and heavy oil, fractured lime stone reservoir
- Pipeline to nearby CO_2 reservoir DODAN (about 2.8 Mton/Day)
- Immiscible CO₂ flooding, pilot application in 1980
- \bullet Expected increase production 10 %

- Surface installations were designed (at that time only one CO_2 pipe line in operation)
- Recycling costs (since 1988) similar to the natural source
- Huff and Puff applications
- Increased production due to increased pressure and effects CO_2
- From 25 BBL/Day (before injection) to 100 BBL/Day (1991)
- Current average 40 BLL/Day per well (5 % production increase)

CCS, enhanced hydrocarbon recovery

E&P multinationals

- Shell: currently not active
- Statoil: currently not active
- BP: just stopped Miller project
- Wintershall: currently not active.

Conclusions

- $CO₂$ enhanced oil production is technically feasible (Companies ready)
- Currently too expensive unless $CO₂$ is readily available
- Situation likely to change as emission restrictions increase

