CCS and enhanced hydrocarbon recovery

Cor Hofstee et al.

TNO | Knowledge for business

CCS, enhanced hydrocarbon recovery

CO₂-Injection in Europe

Storage opportunities

CCS, enhanced hydrocarbor

Theoretical Storage capacity

CO2 storage capacity of released depleted gas fields

Off-shore fields

• Pipelines

CCS, enhanced hydrocarbon recovery

On-shore fields

Public perception

Competition of gas storage etc.

Risk assessment

De Lier Field Background/History

-Shallow (1400-1600 m) Gas field & Oilfield, 53 wells drilled Disclustion started 1959

- -Production started 1958
- -100% NAM share (Rijswijk Concession)

-11 wells for gas production, 9 wells produced, peak 0.6 mln Nm3/d

-Production Ceased 1992

Stacked reservoir

Most wells completed in lower oil stack

•CO₂ injection in shallower depleted gas stack

Notional Surface Scope

Compositional Reservoir simulation

PVT (CO₂)

Transport and behavior (CO₂ and other gas Components)

Injection strategie

Input data

CCS, enhanced hydrocarbon recovery

SEAL/FAULT integrity

Model: A 2D FE DIANA model (10x3 km)

Model input: Pressures

CCS, enhanced hydrocarbon recovery

Results: stress change

The largest stress change at reservoir edges : depletion (left) and injection (right)

Long-term chemical effects in reservoir

PHREEQC

High Quartz Content Low chemical reactivity Low buffering capacity

Increased porosity

Long-term chemical effects in seal

Significant re-arrangement minerals

Decreased porosity

CCS, enhanced hydrocarbon recovery

Short term chemical reactions

CCS, enhanced hydrocarbon recovery

Cement plug lengths according to Dutch Mining Law

Chemical degradation of Portland cement

Source: Barlet-Gouedard et al. 2006

Watersaturated supercritical CO_2 fluid: CO_2 saturated water fluid:

$$d[mm] = 0.2622 \cdot \sqrt{t[h]}$$
$$d[mm] = 0.2182 \cdot \sqrt{t[h]}$$

CCS, enhanced hydrocarbon recovery

Chemical degradation of Portland cement

Extrapolated from Barlet-Gouedard et al. (2006):

Plug length	Corrosion time (years)	
	Wet supercritical CO ₂	CO ₂ -saturated water fluid
1 inch = 2.54 cm (primary cement sheath)	1.1	1.5
6 m (smallest plug length)	60,000	86,000
10 m	170,000	240,000
50 ft = 15.24 m	390,000	560,000
100 ft = 30.48 m	1,500,000	2,200,000
50 m	4,100,000	6,000,000
100 m	17,000,000	24,000,000

All plugs were pressure tested according to DML standards

Cement plug testing as prescribed by Dutch Mining Law

DML requires a cement plug to be tested by passing at least one of the following tests successfully:

- Weight test of at least 100 kN
- Pressure test of at least 50 bars during 15 minutes
- Inflow testing the well and verification that no fluid or gas flows from the reservoir into the well

Two main concerns: the first

Two main concerns: the second

Questions: corrosion and leakage rates?

Resources used for rough corrosion rate estimation in radial well direction

Cement (1 inch)

- Barlet-Gouedard et al. (2006)
- Duguid et al. (2006)
- Duguid et al. (2004)

Casing

- De Waard & Lotz (1993)
- Carvalho et al. (2005)
- Cui et al. (2004)
- George (2003)

> 1 year
< 700 years
~ 60 - 110 years

< 20 mm / year ~ 0.3 – 0.9 mm / year < 30 – 2.5 mm / year < 6.3 mm / year

Conclusion operator

 The operating company decided not to conduct the project and is looking now at other cases with control on abandonment

Comparison with oil field

- Lower ultimate recovery
- Seal only proven for high-viscosity fluids
- Many production/water injection wells

Enhanced hydrocarbon recovery

CCS, enhanced hydrocarbon recovery

Drivers CO₂ enhanced hydrocarbon recovery

- Climate change
- Energy supply

A lot of interests of public, governments

CCS, enhanced hydrocarbon recovery

Enhanced gas recovery

Tracer Analysis

Determination Breakthrough

Investigation retardation process

Two tracers: 1,3-PDMCH & PMCP

1 kg of each tracer were injected in well K12-B6

Sampling of produced gas at K12-B1 and -B5

Date injection: 1 March2005

1,3-PDMCH

• fluorine

carbon

PMCP

Tracer Analyse

Breakthrough well K12-B1 after 130 days

Breakthough well K12-B5 after 460 dagen

Solubility CO₂ >> CH₄ and tracers

Retardation of CO₂

Impact on EGR

Recovery: 54% per 1,3 PBMCH

33% van PMCP per september 2008

CO₂ Massabalans en EGR

Compartiment was voldoende accuraat gemodelleerd

Original CO₂-concentration compartment 3: 13%

Current CO₂-concentration at well K12-B1: > 20%

Quantity of CO₂ injected (jan. '09): 50 kT

Additional gas produced from compartiment 3: so far 50 mln. Nm³

Oil Recovery

Total production = sweeping efficiency * production per swept volume.

Example: a) the water flood sweeps 60 % of the field b) the water replaces 65 % of the oil

Then the ultimate recovery is 0.6 * 0.65 = 39 %

Introduction

STOIIP 10⁹ BBL

Schoonebeek field NL

25 % produced

CO₂ enhanced oil recovery

Miscible/immiscible (roughly: light oil vs HVO) 90% of floods is miscible Breakthrough generally between 0.5 and 2 yrs, independent of miscibility Severe gravity override limits RF, independent of miscibility

Principles CO₂ enhanced oil recovery

Immiscible CO_2 flooding Below minimum miscibility pressure (MMP) Partitioning CO_2 in oil phase > swelling > lowering viscosity Viscous oil For pressures > 80 Bar (steam injection expensive) CO_2 net use: 0.15-0.26 ton/BBL.

Miscible CO_2 flooding Above the MMP, CO_2 extracts/puts lighter components of in the oil. Mixtures miscible with original oil. CO_2 net use 0.30-0.52 ton/BBL.

Pseudo ternary phase diagram

Miscible CO₂ flooding (b)

Mixture CO₂-intermediate compounds

- Often combination vaporizing/condensing gas drive
- Injected fluid generally does not contain hydrocarbon fraction
- Miscibility is reached in zone proceeded by vaporizing gas drive followed by condensing gas drive.

Sweep efficiency

Gas migration very sensitive to heterogeneities

Fine reservoir model required

PVT

Injection strategy

Continuous injection

WACO water-alternating CO₂
 More stability for flood
 less use of expensive CO₂

3-fluid relperms Hysteresis

A lot of circulation of $CO_{2,}$ separation and re-injection

Gross volume of $CO_2 \approx 2^*$ net volume (purchased CO_2)

CO₂ EOR economics

Extra oil

- Miscible 10-15% STOIIP
- Immiscible 5-7%
- CO₂ net consumption
 - Miscible 0.4 t/bbl
 - Immiscible 0.2 t/bbl
- CO₂ purchasing dominates UTC

CO₂ EOR economics, Texas

- West Texas: CO₂ cost indexed to oil price Crude @ 50\$/bbl => CO₂ @ 33\$/t
- Miscible net consumption 0.4 t/bbl CO₂ purchasing cost: 14 \$/bbl
- Assume CAPEX+OPEX \approx CO₂ costs, so CO₂ EOR miscible UTC: 28\$/bbl
- Immiscible UTC estimated at 21 \$/bbl @50 \$/bbl; and 11 \$/bbl @25 \$/bbl

CO₂ EOR economics with increased viscosity

- Assume CO₂ has viscosity increase by factor
 10 100
- Vertical sweep Schoonebeek improves by factor of +/- 2 (Shell CO₂ sequestration screening tool)
- => extra oil: 2*0.05= 10 %
- Schoonebeek: 50 .10⁶ BBL

Complications

- Asphaltene disposition (wells and reservoir)
- Dissolution and subsequent disposition in carbonate reservoirs
- Salt precipitation/ clogging

West Texas : 175 000 bdl/day (was 250000 bbl/day)

90 % miscible, 10 % immiscible 500 mile pipeline

Weyburn: an additional 130 million barrels of oil storage of 30 million tons of CO2 204 mile pipeline

Elsewhere

Hungary, 1969 domestic natural CO₂

Bati Raman field, Turkey (Turkish Petroleum Corporation) SPE 106575

- Very viscous and heavy oil, fractured lime stone reservoir
- Pipeline to nearby CO₂ reservoir DODAN (about 2.8 Mton/Day)
- Immiscible CO₂ flooding, pilot application in 1980
- Expected increase production 10 %

- Surface installations were designed (at that time only one CO₂ pipe line in operation)
- Recycling costs (since 1988) similar to the natural source
- Huff and Puff applications
- Increased production due to increased pressure and effects CO₂
- From 25 BBL/Day (before injection) to 100 BBL/Day (1991)
- Current average 40 BLL/Day per well (5 % production increase)

CCS, enhanced hydrocarbon recovery

E&P multinationals

- Shell: currently not active
- Statoil: currently not active
- BP: just stopped Miller project
- Wintershall: currently not active.

Conclusions

- CO₂ enhanced oil production is technically feasible (Companies ready)
- Currently too expensive unless CO₂ is readily available
- Situation likely to change as emission restrictions increase

