Subsurface Waste Gas Storage Capacity

Petrad – MLR – CGS SINOPEC seninar Chengdu, 15 – 18 September 2009

TNO | Knowledge for business

Subsurface Waste Gas Storage Capacity

- Introduction
- Example
- Storage Capacity
- Injectivity
- Trap Efficiency
- Probability of storage
- Previous estimation
- New estimation
- Conclusions

• Introduction (principles only)

- Example
- Storage Capacity
- Injectivity
- Trap Efficiency
- Probability of storage
- Previous estimation
- New estimation
- Conclusions

Introduction

1990 – Dutch solubility approach

 Surface of the Netherlands x aquifer thickness x porosity x solubility

1992 – Amsterdam - not a large open space – 2 % rule

• Disappointing - => up to 6 %

2005 – IPPC Special Report

- Alberta Basin 4000 GtCO₂ based on solubility
- Permeability is very low

After: Bradshaw J. et al, Carbon Sequestration leadership Forum

Introduction

World - Koide 92 -World - van der Meer 92 -World - IEA 92 -World - Hendriks & Biok 93 -World - Hendriks & Biok 94 -World - IEA 94 -

No definitions

5 Subsurface Waste Gas Storage Capacity

Chengdu, September, 2009

Storage Principle

Conceptual Model

Conceptual Model

Chengdu, September, 2009

Introduction

• Example

- Storage Capacity
- Injectivity
- Trap Efficiency
- Probability of storage
- Previous estimation
- New estimation
- Conclusions

Realistic Example

- Some 46 by 58 km
- 100 m thick
- 200 350 mD range
- 10 injectors down dip
- 10 Mt/y
- 400 Mt in 40 years
- Model to small Average pressure increase of 230 bar (in affected/adopted space)

11 Subsurface Waste Gas Storage Capacity

Chengdu, September, 2009

Example - Free CO2

Example - CO2 Saturated water

Controlling Factors?

4 Important factors controlling the volume of CO_2 we can store in a predefine subsurface space

- Storage Capacity (Volume Average Pressure)
- Potential Injectivity (Permeability Local Pressure)
- Trap Efficiency (Available Space Used Space)
- Data Available and Quality

- Introduction
- Example

Storage Capacity

- Injectivity
- Trap Efficiency
- Probability of storage
- Previous estimation
- New estimation
- Conclusions

Affected Space – Average Pressure Respond

Conclusions (Storage Capacity)

- Affected space is full (rock and water)
- More space via pressure increase and compressibility
- Iength * width * height * N/G * poro (Cw +Cr) * Pavg
- Pavg = Allowed average pressure increase in affected area
- If pressure increase too large => more affected space or less CO_2
- In example nearly 300 x 300 km, 400 Mt is 10.5 bar increase in average volume weighted pressure
- (2 x 10⁻⁵ 1/bar * 10 bar => 0.0002 % Earlier calculations with 100 bar via the geostatic approach/limitation max. 2 %)

- Introduction
- Example
- Storage Capacity

Injectivity

- Trap Efficiency
- Probability of storage
- Previous estimation
- New estimation
- Conclusions

Potential Injectivity 1 (Permeability vs. Local Pressure)

Potential Injectivity 2 (Permeability vs. Local Pressure)

Conclusion (Potential Injectivity)

- Permeability (transmissibility) can reduce the total injection rate
- The higher the permeability the better
- Thicker also
- Pressure dispersion is important
- We developed a simple model to estimate pressure profile and maximum injection pressure
- Total injection volume rate important above individual well rate

- Introduction
- Example
- Storage Capacity
- Injectivity

Trap Efficiency

- Probability of storage
- Previous estimation
- New estimation
- Conclusions

Trap Efficiency (Available Space vs. Used Space)

Conclusions (Trap Efficiency)

- Storage space defined by containment boundary and a spill point
- Trap Efficiency = Used Space / Available Space * 100 %
- Due to the solubility of CO₂ in water the Storage Efficiency could be specified in a form of a dynamic parameter

- Introduction
- Example
- Storage Capacity
- Injectivity
- Trap Efficiency

Probability of storage

- Previous estimation
- New estimation
- Conclusions

Data and probability of results

- Introduction
- Example
- Storage Capacity
- Injectivity
- Trap Efficiency
- Probability of storage

Previous estimation

- New estimation
- Conclusions

Previous estimation

- Results of trap screen study
- Traps planimetered, starting point a spill point.
- No pressure considerations
- $CO_2(kg) = Vr * N/G * E * \Phi * \rho$.

 $\begin{array}{l} Vr = \textit{Bulk aquifer volume } (m^3) \\ \textit{N/G} = \textit{Nett to gross ratio } (-) \\ \textit{E} = \textit{Efficiency factor (constant = 0.02)} \\ \varPhi. = \textit{Porosity (-)} \\ \rho = \textit{CO}_2 \textit{ density at depth (Rotliegend} \\ = 700 \textit{ kg/m}^3, \textit{Triassic = 650 kg/m}^3) \end{array}$

Chengdu, September, 2009

Previous estimation

Group	Member	Number of traps	Gross Volume	Net Volume (2%efficiency factor)
Permian (Rotliegend)	Slochteren Sst.	37	16849	337 Mton
Triassic	Bunter Sst.	31	3857 Mton	77 Mton
Jurassic Lower Cretaceous	Schieland Sst Mb. Vlieland Sst.	24	1207 Mton	24 Mton
Tertiary		0		
Total			21913 Mton	438 Mton
Pr	oportion:			
CC	D ₂ of 3 - 4 po	wer statio	ns for 40 ye	ears

- Introduction
- Example
- Storage Capacity
- Injectivity
- Trap Efficiency
- Probability of storage
- Previous estimation
- New estimation
- Conclusions

New estimation

- Starting point old study
- Affected areas
 Hydraulic connected = Zones
- Only 5 zones found
- For every zone maximum theroretical storage capacity calculated (Pavg increase of 10 bar)

Chengdu, September, 2009

N	ew	esti	mati	on (ca	apa	city)		Theoretical Total Storage (Mtonnes)
	Zone	Area (km²)	Thickness (m)	Permeability (md)	Porosity	Theoretical Total Storage (Mtonnes)	Injec	16,08
	1	2650	50	200	0.18	16.08	1 Mtor	
	2	1180	40	100	0.08	2.55	0.25 Mt 10 v	2.55
	3	2730	100	80	0.10	18,40	1 Mto ye	
	4	4500	120	150	0.18	65,52	2 Mtonn ye	18 40
	5	1550	15	40	0.10	1,57	0.10 Mt ye	10,10
	Total					104.12 Mton		65,52
								1,57
• \	<i>lore</i>	than 3 ti	imes sr	naller 🦯				
• (Only one storage project possible in one Zone						104.12 Mton	

New estimation (injectivity)

Simple model to estimate pressure respond

34 Subsurface Waste Gas Storage Capacity

Chengdu, September, 2009

New estimation (Injectivity)

						Injectivity	Pressure built
Zone	Area(km²)	Thickness (m)	Permeability (md)	Porosity	Theoretical Total Storage (Mtonnes)		up near injection zone (bar)
1	2650	50	200	0.18	16.08	1 Mton for 16	23.75
2	1180	40	100	0.08	2.55	years	
3	2730	100	80	0.10	18.40	0.25 Mtonnes	18.81
4	4500	120	150	0.18	65.52	for 10 years	
5	1550	15	40	0.10	1.57	1 Mton for 18 years	28.45
Total						2 Mtonnes for	26.10
• Inj	ection 1	arget	1Mt/yea	ar – e	xpected	0.1 Mton for 15 years	35.11
		0				104.12 Mtonnes	

Traps 1								
	Pressure up ne injection (bar	Injectivity	Theoretical Total Storage (Mtonnes)	Porosity	Permeability (md)	Thickness (m)	Area(km²)	Zone
3	23.7	1 Mton for 16 years	16.08	0.18	200	50	2650	1
	18.8 ⁻	0.25 Mtonnes for 10 years	2.55	0.08	100	40	1180	2
5	28.4	1 Mton for 18 years	18.40	0.10	80	100	2730	3
6	26.1	2 Mtonnes for 30 years	65.52	0.18	150	120	4500	4
0	35.1	0.1 Mton for 15 years	1.57	0.10	40	15	1550	5
4		104.12 Mtonnes						Total

New estimation (efficiency)

• Possible traps

19

Number of

New estimation (qualification)

- All Zones a "D" status
- Based on good large scale maps
- Fault map
- Seal continuation?
- Poro, perm, thickness, compressibility single estimated values

- Introduction
- Example
- Storage Capacity
- Injectivity
- Trap Efficiency
- Probability of storage
- Previous estimation
- New estimation
- Conclusions

Conclusions

- Subsurface is full (rock and water)
- More space via pressure increase and compressibility

We have specified:

- Affected Space (effect of activity is felt, needed for space)
- Storage Capacity (Volume vs. Average Pressure)
- Potential Injectivity (Permeability vs. Local Pressure)
- Trap Efficiency (Available Space vs. Used Space)
- Data / information probability schema
- For Calculations see paper (OTC 19309)

